

r www.studentbro.in


 \mathcal{A} ssignment

			Electron, cathoo	le rays and positive rays
	Order of e/m ratio of p	roton, α -particle and electron i	is	[AFMC 2004]
•	(a) $e > p > \alpha$	(b) $p > \alpha > e$	(c) $e > \alpha > p$	(d) None of these
	A cathode emits 1.8×10^{-1}	¹⁴ electrons per second, when le. The charge on electron is 1.6		
	(a) 2.7 <i>μ</i> A	(b) 29 μA	(c) 72 µA	(d) 29 <i>mA</i>
; .	An electron is accelerate	d through a pd of 45.5 <i>volt</i> . The	e velocity acquired by it is ((in <i>ms</i> ⁻¹) [AIIMS 2004]
	(a) 4×10^{6}	(b) 4×10^4	(c) 10 ⁶	(d) zero
ŀ	The specific charge of an	electron is	[MP	PET/PMT 1998; J &K CET 2004]
	(a) 1.6×10^{-19} coulomb	(b) 4.8×10^{-19} stat coulomb	(c) 1.76×10^{11} coulomb/kg	(d) 1.76×10^{-11} coulomb/kg
5.	The colour of the positiv	e column in a gas discharge tub	be depends on	[Kerala (Engg.) 2002]
	(a) The type of glass use	ed to construct the tube	(b) The gas in the tube	
	(c) The applied voltage		(d) The material of the ca	athode
5.	Cathode rays are produc	ed when the pressure is of the	order of	[Kerala (Engg.) 2002]
	(a) 2 <i>cm</i> of <i>Hg</i>	(b) 0.1 <i>cm</i> of <i>Hg</i>	(c) 0.01 <i>mm</i> of <i>Hg</i>	(d) $1\mu m$ of Hg
7.	Which of the following is	s not the property of a cathode	ray	[CBSE 2002]
	(a) It casts shadow		(b) It produces heating e	ffect
	(c) It produces flurosen	ce	(d) It does not deflect in	electric field
3.	-	, an oil drop having charge q rated by a distance 'd'. The we		ng a potential difference V in [MP PET 2001]
	(a) <i>qVd</i>	(b) $q \frac{d}{V}$	(c) $\frac{q}{Vd}$	(d) $q \frac{V}{d}$
).	In Thomson mass spectr	ograph $\vec{E} ot \vec{B}$ then the velocity of	of electron beam will be	[CBSE PM/PD 2001]
	(a) $\left \frac{\vec{E}}{\vec{B}} \right $	(b) $\vec{E} \times \vec{B}$	(c) $\left \frac{\vec{B}}{\vec{E}} \right $	(d) $\frac{E^2}{B^2}$
0.	Which is not true with re	espect to the cathode rays		[Kerala (Engg.) 2001]
	(a) A stream of electron	S	(b) Charged particles	
	(c) Move with speed sam	ne as that of light	(d) Can be deflected by m	nagnetic fields

1.		lerated through a potentia the velocity acquired by the e		s. If <i>e/m</i> for the electron be [MP PET 2000]
	(a) $8 \times 10^6 m/s$	(b) $8 \times 10^5 m / s$	(c) $5.9 \times 10^6 m / s$	(d) $5.9 \times 10^5 m/s$
2.	If the speed of electro	n is $5 \times 10^5 m/s$. How long do	es one electron take to trave	rse 1m [CET 1998; DPMT 2000]
	(a) $1 \times 10^{6} s$	(b) $2 \times 10^{-6} s$	(c) $2 \times 10^5 s$	(d) $1 \times 10^5 s$
3.	A metal plate gets hea	ited, when cathode rays strik	e against, it due to	[CPMT 2000]
	(a) Kinetic energy of rays	cathode rays	(b)	Potential energy of cathode
	(c) Linear velocity of rays	cathode rays	(d)	Angular velocity of cathode
4.	-		•	<i>V</i> . If an electric field <i>E</i> is applied erminal velocity 2 <i>V</i> . If magnitude
	of electric field is dec	reased to $\frac{E}{2}$, then terminal v	elocity will become	[CBSE PMT 1999]
	(a) $\frac{V}{2}$	(b) <i>V</i>	(c) $\frac{3V}{2}$	(d) 2V
5۰	The current conduction	on in a discharged tube is due	to	[CBSE PMT 1999]
	(a) Electrons only		(b) +ve ions and elect	rons
	(c) – <i>ve</i> ions and elect	trons	(d) + ve ions, - ve ion	s and electrons
5.	Cathode rays and cana	al rays produced in a certain	discharge tube are deflected	in the same direction if [SCRA 19
	(a) A magnetic field is		(b) An electric field is	
	(c) An electric field is	applied tangentially	(d) A magnetic field is	s applied tangentially
7.	Cathode rays enter in field their path will be	-	perpendicular to the direct	ion of the field. In the magnetic
				[MP PET/PMT 1998]
	(a) Straight line	(b) Circle	(c) Parabolic	(d) Ellipse
3.	•	netic field in Thomson mass		[RPMT 1998]
	(a) Simultaneously, p simultaneously	•	(b)	Perpendicular but not
_	(c) Parallel but not si		(d)	Parallel simultaneously
9.		tive rays helped in the discov	-	[RPMT 1998]
D.	(a) Proton The ratio of momenta 100 <i>V</i> is	(b) Isotopes of an electron and α -particl	(c) Electron e which are accelerated from	(d) α -particle n rest by a potential difference of
				[MNR 1994; RPET 1997]
	(a) 1	(b) $\sqrt{\frac{2m_e}{m_\alpha}}$	(c) $\sqrt{\frac{m_e}{m_\alpha}}$	(d) $\sqrt{\frac{m_e}{2m_\alpha}}$
1.				ationary between its plates. The 5. The number of electrons on the [MP PMT 1994; MP PET 1997]
	(a) 500	(b) 50	(c) 5	(d) 0
	The expected energy of	of the electrons at absolute ze	ero is called	[RPET 1996]
2.				

Get More Learning Materials Here : 💻

23.						
-3.	K.E. of emitted cathode	e rays is dependent on		[CPMT 1996]		
	(a) Only voltage		(b) Only work function	on		
	(c) Both (a) and (b)		(d) It does not depend	d upon any physical quantity		
24.	In a discharge tube at o	0.02 <i>mm</i> , there is a format	ion of	[CBSE PMT 1996]		
	(a) FDS	(b) CDS	(c) Both space	(d) None of these		
25.	A narrow electron be	am passes undeviated th	rough an electric field $E = 3$	3×10^4 volt/m and an overlapping		
	magnetic field $B = 2 \times$ perpendicular. The spe		ron motion, electric field a	nd magnetic field are mutually [MP PET 1995]		
	(a) 60 <i>m/s</i>	(b) $10.3 \times 10^7 m/s$	(c) $1.5 \times 10^7 m/s$	(d) $0.67 \times 10^{-7} m/s$		
26.	An oxide coated filame	nt is useful in vacuum tube	es because essentially	[SCRA 1994]		
_0.			(b)	It can withstand high		
	(a) It has high melting temperatures	-	(0)	it can withstand high		
	(c) It has good mechan relatively lower tempe	e	(d)	I can emit electrons at		
27.	Gases begin to conduct	electricity at low pressure	e because	[CBSE 1994]		
	(a) At low pressure, ga	ases turn to plasma				
	(b) Colliding electrons of atoms	(b) Colliding electrons can acquire higher kinetic energy due to increased mean free path leading to ionisation				
	(c) Atoms break up into electrons and protons					
	_	oms can move freely at low	v pressure			
-0		-	-			
28.	when the speed of elec	trons increases, then the v	alue of its specific charge	[MP PMT 1994]		
	(a) Increases		(b) Decreases			
	(c) Remains unchange decrease	d	(b) Decreases (d) Increases upto so	ome velocity and then begins to		
29.	(c) Remains unchanged decreaseCathode rays moving w field of strength x volt,	d vith same velocity v descri /metre. If the speed of the o	(b) Decreases (d) Increases upto so be an approximate cirular par	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed		
29.	 (c) Remains unchanged decrease Cathode rays moving w field of strength <i>x volt</i>, so that the rays describes 	d vith same velocity v descri /metre. If the speed of the o	(b) Decreases (d) Increases upto so be an approximate cirular pat cathode rays is doubled to 2 <i>v</i> , ircular path (<i>volt / metre</i>) is	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i>		
-	 (c) Remains unchanged decrease Cathode rays moving w field of strength <i>x volt</i>, so that the rays described (a) 2<i>x</i> 	d vith same velocity v descri Vmetre. If the speed of the o be the same approximate c	(b) Decreases (d) Increases upto so be an approximate cirular pat cathode rays is doubled to 2 <i>v</i> , ircular path (<i>volt / metre</i>) is (c) 4 <i>x</i>	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994]		
-	 (c) Remains unchanged decrease Cathode rays moving with the rays described of strength <i>x volt</i>, so that the rays described (a) 2<i>x</i> Cathode rays are similar 	d vith same velocity v descri / <i>metre</i> . If the speed of the pe the same approximate c (b) 3x ar to visible light rays in th eflected by electric and ma	(b) Decreases (d) Increases upto so be an approximate cirular pat cathode rays is doubled to 2 <i>v</i> , ircular path (<i>volt / metre</i>) is (c) 4 <i>x</i> hat	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994]		
-	 (c) Remains unchanged decrease Cathode rays moving will field of strength x volt, so that the rays described (a) 2x Cathode rays are similar (a) They both can be d definite magnitude of will be a strength of will be	d with same velocity v descri / <i>metre.</i> If the speed of the be the same approximate c (b) 3x ar to visible light rays in the eflected by electric and many wavelength	(b) Decreases (d) Increases upto so be an approximate cirular pat cathode rays is doubled to 2 <i>v</i> , ircular path (<i>volt / metre</i>) is (c) 4 <i>x</i> hat	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a		
30.	 (c) Remains unchanged decrease Cathode rays moving will field of strength x volt, so that the rays described (a) 2x Cathode rays are similar (a) They both can be definite magnitude of will (c) They both can ionis 	d with same velocity v descri /metre. If the speed of the be the same approximate co (b) 3x ar to visible light rays in the eflected by electric and ma wavelength se a gas through which the ent if the value of q/m is	(b) Decreases (d) Increases upto so be an approximate cirular pat- cathode rays is doubled to $2v$, ircular path (<i>volt / metre</i>) is (c) $4x$ hat agnetic fields y pass (d) They both can exp	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate s striking the photographic plate,		
29. 30. 31.	 (c) Remains unchanged decrease Cathode rays moving will field of strength x volt, so that the rays described (a) 2x Cathode rays are similar (a) They both can be definite magnitude of will compare the strength of the strength o	d with same velocity v descri /metre. If the speed of the be the same approximate co (b) 3x ar to visible light rays in the eflected by electric and ma wavelength se a gas through which the ent if the value of q/m is	(b) Decreases (d) Increases upto so be an approximate cirular pat- cathode rays is doubled to $2v$, ircular path (<i>volt / metre</i>) is (c) $4x$ hat agnetic fields y pass (d) They both can exp	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate s striking the photographic plate,		
30. 31.	 (c) Remains unchanged decrease Cathode rays moving will field of strength x volt, so that the rays described (a) 2x Cathode rays are similar (a) They both can be d definite magnitude of will (c) They both can ionise In Thomson's experimentation the trace would be (a) Straight line 	d vith same velocity v descri vmetre. If the speed of the be the same approximate co (b) 3x ar to visible light rays in the eflected by electric and man wavelength se a gas through which the ent if the value of q/m is e	(b) Decreases (d) Increases upto so be an approximate cirular pati- cathode rays is doubled to $2v$, ircular path (<i>volt / metre</i>) is (c) $4x$ hat agnetic fields y pass (d) They both can exp the same for all positive ions (c) Circular	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate s striking the photographic plate, [RPMT 1986] (d) Elliptical		
30. 31.	 (c) Remains unchanged decrease Cathode rays moving will field of strength x volt, so that the rays described (a) 2x Cathode rays are similar (a) They both can be d definite magnitude of will (c) They both can ionise In Thomson's experimentation the trace would be (a) Straight line 	d vith same velocity v descri /metre. If the speed of the ope the same approximate co (b) 3x ar to visible light rays in the eflected by electric and ma wavelength se a gas through which the ent if the value of q/m is e (b) Parabolic particle nature because of e in vacuum	(b) Decreases (d) Increases upto so be an approximate cirular pati- cathode rays is doubled to $2v$, ircular path (<i>volt / metre</i>) is (c) $4x$ hat agnetic fields y pass (d) They both can exp the same for all positive ions (c) Circular	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate s striking the photographic plate, [RPMT 1986] (d) Elliptical [CPMT 1986; MNR 1986]		
30. 31.	 (c) Remains unchanged decrease Cathode rays moving will field of strength x volt, so that the rays described (a) 2x Cathode rays are similar (a) They both can be definite magnitude of will be (c) They both can ionise in Thomson's experiment then the trace would be (a) Straight line The cathode rays have (a) They can propagate 	d vith same velocity v descri /metre. If the speed of the be the same approximate c (b) 3x ar to visible light rays in the eflected by electric and may wavelength se a gas through which the ent if the value of q/m is e (b) Parabolic particle nature because of e in vacuum fields	 (b) Decreases (d) Increases upto so be an approximate cirular pate cathode rays is doubled to 2<i>v</i>, ircular path (<i>volt / metre</i>) is (c) 4<i>x</i> nat agnetic fields y pass (d) They both can exp the same for all positive ions (c) Circular the fact that 	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate s striking the photographic plate, [RPMT 1986] (d) Elliptical [CPMT 1986; MNR 1986]		
30. 31.	 (c) Remains unchanged decrease Cathode rays moving wind field of strength x volt, so that the rays described (a) 2x Cathode rays are similar (a) They both can be definite magnitude of wind (c) They both can ionise in Thomson's experimentation the trace would be (a) Straight line (a) They can propagate electric and magnetic for (c) They produced fluor 	d vith same velocity v descri /metre. If the speed of the ope the same approximate ci (b) 3x ar to visible light rays in the effected by electric and ma wavelength se a gas through which the ent if the value of q/m is e (b) Parabolic particle nature because of e in vacuum fields prescence	 (b) Decreases (d) Increases upto so be an approximate cirular pate cathode rays is doubled to 2<i>v</i>, ircular path (<i>volt / metre</i>) is (c) 4<i>x</i> nat agnetic fields y pass (d) They both can exp the same for all positive ions (c) Circular the fact that (b) 	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate s striking the photographic plate, [RPMT 1986] (d) Elliptical [CPMT 1986; MNR 1986] They are deflected by (d) They cast shadows		
30.	 (c) Remains unchanged decrease Cathode rays moving wind field of strength x volt, so that the rays described (a) 2x Cathode rays are similar (a) They both can be definite magnitude of wind (c) They both can ionise in Thomson's experimentation the trace would be (a) Straight line (a) They can propagate electric and magnetic for (c) They produced fluor 	d vith same velocity v descri /metre. If the speed of the ope the same approximate ci (b) 3x ar to visible light rays in the effected by electric and ma wavelength se a gas through which the ent if the value of q/m is e (b) Parabolic particle nature because of e in vacuum fields prescence	 (b) Decreases (d) Increases upto so be an approximate cirular pate cathode rays is doubled to 2<i>v</i>, ircular path (<i>volt / metre</i>) is (c) 4<i>x</i> nat agnetic fields y pass (d) They both can exp the same for all positive ions (c) Circular the fact that (b) 	ome velocity and then begins to th of radius <i>r</i> metre in an electric , the value of electric field needed [BHU 1994] (d) 6 <i>x</i> [SCRA 1994] (b) They both have a pose a photographic plate s striking the photographic plate, [RPMT 1986] (d) Elliptical [CPMT 1986; MNR 1986] They are deflected by		

Get More Learning Materials Here : 💻

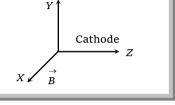
Regional www.studentbro.in

- (a) Total vacuum
 (b) 10⁻³ to 10⁻⁴ atmospheric pressure
 (c) One atmospheric pressure
 (d) 10⁻³ to 10⁻⁴ mm
 35. Cathode-ray tube is a part of [CPMT 1972]
 (a) Compound microscope (b) A radio receiver generator
 (c) A television set
 (d) A van de Graaf
- **36.** In a region of space cathode rays move along +*ve Z*-axis and a uniform magnetic field is applied along X-axis. If cathode rays pass undeviated, the direction of electric field will be along
 - (a) *ve X*-axis
 - (b) +ve Y-axis
 - (c) ve Y-axis
 - (d) +ve Z-axis
- **37.** A beam of electron whose kinetic energy is *E* emerges from a thin foil window at the end of an accelerator tube. There is a metal plate at a distance *d* from this window and at right angles to the direction of the emerging beam. The electron beam is prevented from hitting the plate *P*, if a magnetic field *B* is applied, which must be

(a)
$$B \ge \sqrt{\frac{2mE}{e^2d^2}}$$
, into the page (b) $B \ge \sqrt{\frac{2mE}{e^2d^2}}$, out of the page (c) $B \ge \sqrt{\frac{2mE}{ed}}$, into the page (d) $B \ge \left(\frac{2mE}{ed}\right)$, out of the page

- **38.** In Thomson's experiment for determining *e/m*, the potential difference between the cathode and the anode (in the accelerating column) is the same as that between the deflecting plates (in the region of crossed fields). If the potential difference is doubled, by what factor should the magnetic field be increased to ensure that the electron beam remains undeflected
 - (a) $\sqrt{2}$ (b) 2 (c) $2\sqrt{2}$ (d) 4
- **39.** In Thomson's experiment helium He^3 and He^4 exhibit parabolas. The equation of parabola for He^3 is $z^2 = 12Y$, then for He^4 the equation will be

(a)
$$Z^2 = 16Y$$
 (b) $Z^2 = 12Y$ (c) $Z^2 = 4Y$ (d) $Z^2 = 9Y$


Matter waves

[J & K CET 2004]

- **40.** An electron and a proton are accelerated through the same potential difference. The ratio of their De-Broglie wavelength will be
 - (a) $(m_p / m_e)^{1/2}$ (b) m_t / m_p (c) m_p / m_t (d) 1
- 41. An electron and proton have the same de-Broglie wavelength. Then the kinetic energy of the electron is [Kerala PMT 2
 (a) Zero
 (b) Infinity

CLICK HERE

- (c) Equal to the kinetic energy of the proton (d) Greater than the kinetic energy of the proton
- **42.** For moving ball of cricket, the correct statement about de-Broglie wavelength is [RPMT 2001]
 - (a) It is not applicable for such big particle (b) $\frac{h}{\sqrt{2mE}}$

	(c) $\sqrt{\frac{h}{2mE}}$		(d)	$\frac{h}{2mE}$		
43.	Photon and electron are and λ_{el} then correct state	given same energy $(10^{-20} J)$. We ment will be	Wave2	length associated with j	photon and e	lectron are λ _{Ph} [RPMT 2001]
	(a) $\lambda_{Ph} > \lambda_{el}$	(b) $\lambda_{Ph} < \lambda_{el}$	(c)	$\lambda_{Ph}=\lambda_{el}$	(d) $\frac{\lambda_{el}}{\lambda_{Ph}} = C$	
44.	Wavelength associated w	ith an electron of kinetic ener	gy 54	eV is	[AM	U (Engg.) 2000]
	(a) $1.66 \times 10^{-10} m$	(b) $2.6 \times 10^{-9} m$	(c)	$3.5 \times 10^{-11} m$	(d) None of	the above
45 .	The energy that should be will be	e added to an electron to redu	ce its	de-Broglie wavelength		
						gg./Med.) 2000]
	(a) Four times the initial			(b)	Thrice the ir	
46	(c) Equal to the initial en		1	(d)	Twice the in	
46.	wavelength will be for	on, a proton a neutron and	i an	α -particle is identica	i, the maxin	ium de-Brogne
	C				[CBSE PMT 1999]
	(a) Electron	(b) Proton	(c)	α -particle	(d) Neutron	
47.	• •	rikes a photo-sensitive surface reased to 2 <i>E</i> , the wavelength		-		energy <i>E</i> . If the [MP PET 1997]
	(a) $\lambda' = \frac{\lambda}{2}$	(b) $\lambda' = 2\lambda$	(c)	$\frac{\lambda}{2} < \lambda' < \lambda$	(d) $\lambda' > \lambda$	
48.	The de-Brogile wavelengt	h of electron is 10Å, then its v	veloci	ty in <i>m/sec</i> will be		[Manipal 1997]
	(a) 7.2×10^5	(b) 72×10^4	(c)	7.2×10^{-5}	(d) 7.2×10^6	
49.		ccelerated through a potentian the potentian of mass <i>M</i> acceler		•	-	•
	(a) $\lambda\left(\frac{m}{M}\right)$	(b) $\lambda\left(\frac{M}{m}\right)$	(c)	$\lambda \sqrt{rac{m}{M}}$	(d) $\lambda \sqrt{Mm}$	
50.	The accelerating voltage of	of an electron gun is 50,000 v	olts.	de-Broglie wavelength o	of the electron	n will be [RPMT 1995]
	(a) 0.55Å	(b) 0.055 Å	(c)	0.077 Å	(d) 0.095 Å	
51.	The wavelength of <i>x</i> -ray p	photon is 0.01 Å, then its mom	nentu	m in <i>Kg m/s</i> is		[RPMT 1995]
	(a) 6.63×10^{-22}	(b) 6.63×10^{-24}	(c)	6.63×10^{-46}	(d) 6.63 × 10	-32
52.	An proton moving with th	e velocity of $6.6 \times 10^5 m / \text{sec}$ has	as a d	le-Broglie wavelength g	ven by	[CPMT 1993]
	(a) 6×10^{-2} Å	(b) 6×10^{-3} Å	(c)	1 Å	(d) 2 Å	
53.	A particle which has zero	rest mass and non-zero energ	gy and	d momentum must trave	el with a spee	d [MP PMT 1992]
	(a) Equal to c, the speed	of light in vacuum	(b)	Greater then c		
	(c) Less then c		(d)	Tending to infinity		
54.	The wavelengths of a ph energy	oton, an electron and uraniu	ım at	om are identical. Whic	h of then wi	ll have highest [MP PMT 1992]
54.	• •	oton, an electron and uraniu		com are identical. Whic Electron	h of then wi	•

CLICK HERE

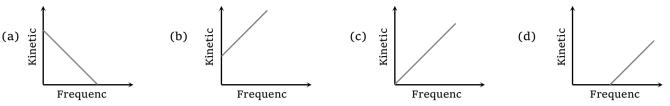
>>

Regional www.studentbro.in

If E_1, E_2 and E_3 are the respective kinetic energies of an electron, an alpha particle and a proton each having 55. the same De-Broglie wavelength then [CBSE 1991] (a) $E_1 > E_3 > E_2$ (c) $E_1 > E_2 > E_3$ (d) $E_1 = E_2 = E_3$ (b) $E_2 > E_3 > E_1$ Momentum of a photon of electro - magnetic radiation radiation is 3.3×10^{-29} kg-m-s⁻¹. Then frequency of related 56. waves is [MP PET 1990] (b) $6.0 \times 10^2 Hz$ (a) $3.0 \times 10^3 Hz$ (c) $7.5 \times 10^{12} Hz$ (d) $1.5 \times 10^{13} Hz$ The energy of electron with de-Broglie wavelength of 10^{-10} m, is (in eV) 57. [RPMT 1988] (a) 13.6 (b) 12.27 (c) 1.227 (d) 150.5 If there is an increase in linear dimensions of the object, the associated de-Broglie wavelength 58. [RPET 1986] (a) Increases (b) Decreases (d) Depends on the density of object (c) Remains unchanged Which of the following figure represents the variation of particle momentum and the associated De-Broglie 59. wavelength [AIIMS 1982] (c) ^{*p*} (d) On applying a potential difference of V volt on a proton, a wave of λ wavelength is obtained. The voltage 60 applied to an α -particle to produce the same wavelength will be (in *volts*) (a) V (b) V/5(c) V/8 (d) 2V 61. Matter waves are Longitudinal waves (c) Probability waves (a) Electromagnetic waves (b) (d) Two sand grains, one of diameter 0.5 mm and the other of diameter 1.0 mm are moving with the same 62. momentum, then the de-Broglie wavelength of the first is (a) Greater than that of the second the (b)Less than that of second (d) Double incomparison to (c) Equal to that of the second that of the second An atom when undergoing a transition from an excited state to the ground state emits a photon of wavelength 63. 1Å. Then, the recoil energy of the atom will be (assume mass of the atom = 40 amu) (a) $3.3 \times 10^{-20} J$ (b) $1.3 \times 10^{-20} J$ (c) $3.3 \times 10^{-22} J$ (d) $6.6 \times 10^{-24} J$ The electron micro-scope works on the principle of 64. (a) Particle theory (b) Matter wave concept (c) Uncertainty (d) All of the above The de-Broglie wavelength of an electron moving in the n^{th} Bohr orbit of radius r Å will be 65. (c) $\frac{2\pi r}{n}$ Å (b) $\frac{r}{n}$ Å (a) *nr* Å (d) $2\pi n$ Å If the energy of a particle is reduced to half then the percentage increase in the de-Broglie wavelength is about 66. (b) 50% (c) 29% (d) 100% (a) 41% The velocity of an electron in the ground state of hydrogen atom is 2.2×10^6 m/s. The De-Broglie wavelength 67. associated with a muon in the ground state of a muonic hydrogen will be $(m_{\mu} = 207 m_{e})$

CLICK HERE

🚓 www.studentbro.in


			Electron, Photo	on, Photoelectric Effect and X-			
	(a) 1.6 Å	(b) 0.16 Å	(c) 0.016 Å	(d) 0.0016 Å			
58.		n electron is changed by Δp , ther mentum of the electron will be	n the de-Broglie wavelen	ngth associated with it changes by			
	(a) $\frac{\Delta p}{200}$	(b) $\frac{\Delta p}{199}$	(c) 199 Δ <i>p</i>	(d) 400 ∆ <i>p</i>			
69 .	An electron and a phot The magnitude of <i>p/E</i> i		is the momentum of elec	ectron and <i>E</i> the energy of photon.			
	(a) 3.0×10^8	(b) 3.33×10^{-9}	(c) 9.1×10^{-31}	(d) 6.64×10^{-34}			
				Photon/Photoelectric effect			
70.	Ũ	's photoelectric equation, the p equency, of the incident radiatio		gy of the emitted photo electronswhose slope[AIEEE 2004]			
	(a) Depends on the nat	(a) Depends on the nature of the metal used					
	(b) Depends on the intensity of the radiation						
	(c) Depends both on th	he intensity of the radiation and	the metal used				
	(d) Is the same for all	metals and independent of the in	intensity of the radiation	1			
71.	The energy of incident	t photons corresponding to maxin	mum wavelength of visi	ble light is [J & K CET 2004]			
	(a) 3.2 <i>eV</i>	(b) 7 <i>eV</i>	(c) 1.55 <i>eV</i>	(d) 1 <i>eV</i>			
72.	If the work function of	f potassium is 2 <i>eV,</i> then its photo	oelectric threshold wave	elength is			
	(a) 310 <i>nm</i>	(b) 620 <i>nm</i>	(c) 6200 nm	(d) 3100 nm			
73.	Threshold wavelength	for metal is 5200 Å. The photoe	electrons will be ejected	if it is irradiated by light from [J & I			
	(a) 50 watt infrared la	amp (b) 1 watt infrared lamp	(c) 50 watt ultraviole	et lamp (d)0.5 watt infrared lamp			
74.	The dual nature of ligh	ıt is exhibited by		[BCECE 2004]			
	(a) Diffraction and pho	otoelectric effect	(b) Diffraction and re	eflection			
	(c) Refraction and inte	erference		(d) Photo electric effect			
75.	-	_	-	photo-sensitive surface for three he frequencies for the curves <i>a, b</i>			
	and c respectively.	u v c	vu:v €	[IIT-JEE (Screening) 2004]			
	and crospectively.						
			Photo				
	(a) $f_a = f_b$ and $l_a \neq l_b$		Photo				
	(a) $f_a = f_b$ and $l_a \neq l_b$ (b) $f_a = f_c$ and $l_a = l_c$		Photo				
	(a) $f_a = f_b$ and $l_a \neq l_b$		Photo	Anode			

76. A photon of energy 4 eV is incident on a metal surface whose work function is 2 eV. The minimum reverse potential to be applied for stopping the emission of electrons is [Similar to DCE 2000; AIIMS 2004]
 (a) 2 V
 (b) 4V
 (c) 6V
 (d) 8V

77. According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency of incident radiation is [CBSE PMT 2004]

78. Consider the two following statements *A* and *B* and identify the correct choice given in the answers(A) In photovoltaic cells the photoelectric current produced is not proportional to the intensity of incident light.(B) In gas filled photoemissive cells the velocity of photoelectrons depends on the wavelength of the incident radiation

[EAMCET (Engg.) 2003]

[MP PET 2000, 2003]

(d) Green house effect

🕀 www.studentbro.in

[UPSEAT 2003]

(d) h/v_{o}

(a) Both A and B are true
 (b) Both A and B are false
 (c) A is true but B is false
 (d) A is false B is true
 79. There are n₁ photons of frequency γ₁ in a beam of light. In an equally energetic beam, there are n₂ photons of frequency γ₂. Then the correct relation is

(a)
$$\frac{n_1}{n_2} = 1$$
 (b) $\frac{n_1}{n_2} = \frac{\gamma_1}{\gamma_2}$ (c) $\frac{n_1}{n_2} = \frac{\gamma_2}{\gamma_1}$ (d) $\frac{n_1}{n_2} = \frac{\gamma_1^2}{\gamma_2^2}$

80. Two identical photo-cathodes receive light of frequencies f_1 and f_2 . If the velocities of the photo electrons (of mass *m*) coming out are respectively v_1 and v_2 , then [AIEEE 2003]

(a)
$$v_1 - v_2 = \left[\frac{2h}{m}(f_1 - f_2)\right]^{1/2}$$
 (b) $v_1^2 - v_2^2 = \frac{2h}{m}(f_1 - f_2)$ (c) $v_1 + v_2 = \left[\frac{2h}{m}(f_1 + f_2)\right]^{1/2}$ (d) None of these

81. The frequency and work function of an incident photon are v and ϕ_0 . If v_0 is the threshold frequency then necessary condition for the emission of photo electron is **[RPET 2003]**

(a)
$$v < v_0$$
 (b) $v = \frac{v_0}{2}$ (c) $v \ge v_0$ (d) None of these

82. Light of frequency ν is incident on a substance of threshold frequency $\nu_0(\nu_0 < \nu)$. The energy of the emitted photoelectron will be

(a)
$$h(v-v_0)$$
 (b) h/v (c) $he(v-v_0)$

83. In a photoelectric effect experiment the slope of the graph between the stopping potential and the incident frequency will be

(a) 1 (b) 0.5 (c)
$$10^{-13}$$
 (d) 10^{-54}

84. Ultraviolet radiation of 6.2 eV falls on an aluminium surface (work function 4.2 eV). The kinetic energy in joules of the fastest electron emitted is approximately [MNR 1987; MP PET 1990; CBSE 1993; RPMT 2001; BVP 2003]

(a)
$$3.2 \times 10^{-21}$$
 (b) 3.2×10^{-19} (c) 3.2×10^{-17} (d) 3.2×10^{-15}

85. In photoelectric emission the number of electrons ejected per second [MH CET 1999; MP PMT 2002; KCET 2003]

- (a) Is proportional to the intensity of light (b) Is proportional to the wavelength of light
- (c) Is proportional to the frequency of light (d) Is proportional to the work function of metal
- 86. When ultraviolet rays are incident on metal plate, then photoelectric effect does not occurs. It occurs by the incidence of [CBSE 2002]
 - (a) X-rays (b) Radio wave (c) Infrared rays

87. The threshold wavelength for photoelectric effect of a metal is 6500Å. The work function of the metal is approximately [MP PET 2002]

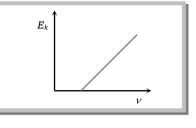
CLICK HERE

			Electron, Photon,	Photoelectric Effect and X-		
	(a) 2 <i>eV</i>	(b) 1 <i>eV</i>	(c) 0.1 eV	(d) 3 <i>eV</i>		
8.	Which of the following	g statements is correct		[JIPMER 2001, 2002]		
	(a) The stopping potential increases with increasing intensity of incident light					
	(b) The photocurrent increases with increasing intensity of light					
	(c) The photocurrent is proportional to applied voltage					
	(d) The current in a p	hotocell increases with incr	easing frequency of light			
9.			rence of 60 V across is illumina I <i>m</i> away the photoelectrons emi			
	(a) Are one quarter as	s numerous	(b)	Are half as numerous		
	(c) Each carry one qu	arter of their previous mom	entum (d) Each carry one quart	ter of their previous energy		
о.	A radio transmitter ra	diates 1 <i>kW</i> power at a wav	elength 198.6 <i>m</i> . How many pho	otons does it emit per second [Ke		
	(a) 10 ¹⁰	(b) 10 ²⁰	(c) 10 ³⁰	(d) 10 ⁴⁰		
1.		gy fall on the surface of the ge required for these electr	metal emitting photoelectrons o ons are	of maximum kinetic energy 4.0 [Orrisa (Engg.) 2002]		
	(a) 5.5 V	(b) 1.5 V	(c) 9.5 V	(d) 4.0 V		
2.	Energy of photon who	se frequency is 10 ¹² MHz wil	ll be	[MH CET 2002]		
	(a) $4.14 \times 10^{3} keV$	(b) $4.14 \times 10^2 eV$	(c) $4.14 \times 10^{3} MeV$	(d) $4.14 \times 10^3 eV$		
3.	If a photon has velocit	y c and frequency <i>v</i> , then w	hich of following represents its	wavelength [AIEEE 2002]		
	(a) $\frac{hc}{E}$	(b) $\frac{hv}{c}$	(c) $\frac{hv}{c^2}$	(d) <i>hv</i>		
1.	Light of frequency a energy of the emitte		tal of the threshold frequenc	ty v_0 . The maximum kinetic [MP PET 2002]		
	(a) $3hv_0$	(b) $2hv_0$	(c) $\frac{3}{2}hv_0$	(d) $\frac{1}{2}hv_0$		
5.	difference required the light of wavelen	to stop the ejection of elegth 2λ , then the potentia	nonochromatic light of wave ectrons is $3V_0$. When the sam al difference required to stop old wavelength for the metal (c) 4λ	ne surface is illuminated by		
		5				
5.		neory of light which of the f collides with an electron in	following physical quantities ass vacuum	sociated with a photon do not / [AMU (Engg.) 2001]		
	(a) Energy and mome	ntum (b)	Speed and momentum	(c) Speed only (d)		
' .	Which of the following	g is incorrect statement reg	arding photon	[MH CET (Med.) 2001]		
	(a) Photon exerts no p zero	oressure (b) (d) None of these	Photon energy is <i>hv</i>	(c) Photon rest mass is		
3.	Light of frequency v function for the substa	_	otoelectric substance with three	shold frequency v_0 . The work [MP PMT 2001]		
	(a) <i>hv</i>	(b) hv_0	(c) $h(v - v_0)$	(d) $h(v + v_0)$		
).		eV are incident on a metal photoelectrons will be	surface whose work function	is 4 eV. The minimum kinetic [MP PET 2001]		
	(a) 0 <i>eV</i>	(b) 1 eV	(c) 2 <i>eV</i>	(d) 10 <i>eV</i>		
00.	For the photoelectric	effect, the maximum kinet	ic energy E_k of the emitted photon in the figure. The slope of the cu	otoelectrons is plotted against		

Get More Learning Materials Here : 💻

 r www.studentbro.in

- (a) Charge of the electron
- (b) Work function of the metal
- (c) Planck's constant
- (d) Ratio of the Planck's constant to electronic charge
- **101.** If intensity of incident light is increased in PEE then which of the following is true [AIIMS 1998; RPET 2001]
 - (a) Maximum K. E. of ejected electron will increase (b) Work function will remain unchanged
 - (c) Stopping potential will decrease (d) Maximum K.E. of ejected electron will decrease
- **102.** Consider the following statements


Assertion (A) : The number of electrons emitted in the photoelectric effect depend upon the intensity of incident photon.


Reason (R) : The ejection of electrons from a metallic surface is not possible until frequency of incident photons is not more than threshold frequency. Of these statements [AIIMS 2001]

- (a) Both *A* and *B* are true and the *R* is a correct explanation of the *A*
- (b) Both A and R are true but the R is not a correct explanation of the A
- (c) A is true but the R is false
- (d) Both A and R are false
- (e) A is false but the R is true
- **103.** The stopping potential V for photoelectric emission from a metal surface is plotted along Y-axis and frequency ν of incident light along X-axis. A straight line is obtained as shown. Planck's constant is given by [Similar to MP PMT 20

CLICK HERE

(a) Slope of the line V 0 (b) Product of slope on the line and charge on the electron (c) Product of intercept along Y-axis and mass of the electron (d) Product of Slope and mass of electron 104. Which of the following shows particle nature of light (a) Refraction (b) Interference (c) Polarization 105. With the increase in the no. of incident photons [CPMT 1999; MH CET (Med.) 2000; CBSE PMT 1999, 2000; KCET (Engg./Med.) 2001] (a) Photoelectric current increases (b) Kinetic energy photoelectrons increases (c) Photoelectric current decreases (d) Kinetic energy photoelectrons decreases **106.** The frequency of a photon having energy 100 eV is $(h = 6.610^{-34} J - sec)$ (a) $2.42 \times 10^{26} Hz$ (b) $2.42 \times 10^{16} Hz$ (c) $2.42 \times 10^{12} Hz$ (d) $2.42 \times 10^9 Hz$ 107. Consider the following statements

[CBSE 2001; AFMC 2003]

of

of

[AFMC 2000]

(d) Photoelectric effect

🕀 www.studentbro.in

			Electron, Photo	n, Photoelectric Effect and X-
	Assertion (<i>A</i>) : Photo frequency above thres	-	ive surface is possible onl	y if the incident radiation has
	Reason (<i>R</i>) : Unless <i>h</i>	v > W, the work function (<i>W</i>)	of photo-sensitive surface,	no photo emission is possible.
	Of these statements			[AIIMS 2000
	(a) Both A and B are the	rue and the <i>R</i> is a correct expla	anation of the A	
	(b) Both A and R are the	rue but the <i>R</i> is not a correct e	explanation of the A	
	(c) A is true but the R	is false		
	(d) Both A and R are fa	alse		
	(e) A is false but the R	is true		
58.	Which light when falli	ng on a metal will emit photo	electrons	[DCE 2000
	(a) Ultra-violet radiat	ion (b) Infrared radiation	(c) Radiowaves	(d) Microwaves
9 .				function of a metal are inciden mitted electrons in the two case [KCET 2000
	(a) 1:4	(b) 1:3	(C) 1:1	(d) 1 : 2
0.	-	for light of wavelength 4000 Å ctively then which will be bett		as cathode whose work function [RPET 1999]
	(a) <i>Na</i>	(b) <i>Cu</i>	(c) Both	(d) None of these
1.		nove an electron from an alur ocity of fastest electron ejecte		f light of wavelength 2000Å fall [AMU 1999]
	(a) $2.5 \times 10^7 m/s$	(b) $8.4 \times 10^5 m / s$	(c) $6.7 \times 10^6 m/s$	(d) $8.4 \times 10^4 m / s$
2.	If in a photoelectric ex	periment, the wavelength of i	ncident radiation is reduce	d from 6000 Å to 4000 Å, then
	(a) Stopping potential increase	will decrease	(b)	Stopping potential wil
	(c) Kinetic energy of e	emitted electrons will decrease	e (d) The value of work	function will decrease
13.	The maximum velocity	y of an electron emitted by li	ght of wavelength λ incid	
	work function ϕ , is where ϕ			ent on the surface of a metal o speed of light [MP PET/PMT 1998
				speed of light [MP PET/PMT 1998
-	(a) $\left[\frac{2(hc+\lambda\phi)}{m\lambda}\right]^{1/2}$	here h = Planck's constant, m = (b) $\frac{2(hc - \lambda\phi)}{m}$ 2000Å falls on a sensitive pla	= mass of electron and $c = s$ (c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$	speed of light [MP PET/PMT 1998
-	(a) $\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$ Light of wavelength 5 energy of the photoele (a) 0.58 <i>eV</i>	here h = Planck's constant, m = (b) $\frac{2(hc - \lambda\phi)}{m}$ 5000Å falls on a sensitive plactron emitted will be (b) 2.48 eV	= mass of electron and $c = s$ (c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$ ate with photoelectric work (c) 1.24 <i>eV</i>	speed of light [MP PET/PMT 1998 (d) $\left[\frac{2(h\lambda - \phi)}{m}\right]^{1/2}$ k function of 1.9 eV. The kineti [CBSE 1998 (d) 1.16 eV
4.	(a) $\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$ Light of wavelength 5 energy of the photoele (a) 0.58 <i>eV</i>	here h = Planck's constant, m = (b) $\frac{2(hc - \lambda\phi)}{m}$ 5000Å falls on a sensitive plactron emitted will be (b) 2.48 eV	= mass of electron and $c = s$ (c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$ ate with photoelectric work (c) 1.24 <i>eV</i>	speed of light [MP PET/PMT 1998 (d) $\left[\frac{2(h\lambda - \phi)}{m}\right]^{1/2}$ k function of 1.9 eV. The kineti [CBSE 1998 (d) 1.16 eV F photons radiated per second ar
4.	(a) $\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$ Light of wavelength 5 energy of the photoele (a) 0.58 <i>eV</i>	here h = Planck's constant, m = (b) $\frac{2(hc - \lambda\phi)}{m}$ 5000Å falls on a sensitive plactron emitted will be (b) 2.48 eV	= mass of electron and $c = s$ (c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$ ate with photoelectric work (c) 1.24 <i>eV</i>	speed of light [MP PET/PMT 1998 (d) $\left[\frac{2(h\lambda - \phi)}{m}\right]^{1/2}$ k function of 1.9 <i>eV</i> . The kineti [CBSE 1998 (d) 1.16 <i>eV</i> F photons radiated per second ar
1 .	(a) $\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$ Light of wavelength 5 energy of the photoele (a) 0.58 <i>eV</i> If mean wavelength of (a) 3×10^{23}	here h = Planck's constant, m = (b) $\frac{2(hc - \lambda\phi)}{m}$ 5000Å falls on a sensitive pla ctron emitted will be (b) 2.48 eV F light radiated by 100 W lamp	= mass of electron and $c = s$ (c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$ atte with photoelectric work (c) 1.24 <i>eV</i> p is 5000 Å, then number of (c) 2.5 × 10 ²⁰	speed of light [MP PET/PMT 1998 (d) $\left[\frac{2(h\lambda - \phi)}{m}\right]^{1/2}$ k function of 1.9 <i>eV</i> . The kineti [CBSE 1998 (d) 1.16 <i>eV</i> F photons radiated per second ar [RPET 1997
4.	(a) $\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$ Light of wavelength 5 energy of the photoele (a) 0.58 <i>eV</i> If mean wavelength of (a) 3×10^{23} When an inert gas is find (a) Photoelectric current	here h = Planck's constant, m = (b) $\frac{2(hc - \lambda\phi)}{m}$ 5000Å falls on a sensitive plactron emitted will be (b) 2.48 eV T light radiated by 100 W lamp (b) 2.5×10^{22} filled in the place vacuum in a pent is decreased	= mass of electron and $c = s$ (c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$ atte with photoelectric work (c) 1.24 <i>eV</i> p is 5000 Å, then number of (c) 2.5 × 10 ²⁰	speed of light [MP PET/PMT 1998 (d) $\left[\frac{2(h\lambda - \phi)}{m}\right]^{1/2}$ k function of 1.9 <i>eV</i> . The kineti [CBSE 1998 (d) 1.16 <i>eV</i> F photons radiated per second ar [RPET 1997 (d) 5×10^{17}
4.	(a) $\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$ Light of wavelength 5 energy of the photoele (a) 0.58 <i>eV</i> If mean wavelength of (a) 3×10^{23} When an inert gas is fi (a) Photoelectric current	here $h = Planck's constant, m =$ (b) $\frac{2(hc - \lambda\phi)}{m}$ 5000Å falls on a sensitive pla ctron emitted will be (b) 2.48 eV Flight radiated by 100 W lamp (b) 2.5×10^{22} clied in the place vacuum in a plant is decreased ent is decreased	= mass of electron and $c = s$ (c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$ atte with photoelectric work (c) 1.24 <i>eV</i> p is 5000 Å, then number of (c) 2.5 × 10 ²⁰	speed of light [MP PET/PMT 1998 (d) $\left[\frac{2(h\lambda - \phi)}{m}\right]^{1/2}$ k function of 1.9 eV. The kineti [CBSE 1998 (d) 1.16 eV F photons radiated per second ar [RPET 1997 (d) 5×10^{17}
.4. .5.	(a) $\left[\frac{2(hc + \lambda\phi)}{m\lambda}\right]^{1/2}$ Light of wavelength 5 energy of the photoele (a) 0.58 <i>eV</i> If mean wavelength of (a) 3×10^{23} When an inert gas is fi (a) Photoelectric current (b) Photoelectric current	here $h = Planck's constant, m =$ (b) $\frac{2(hc - \lambda\phi)}{m}$ 5000Å falls on a sensitive pla ctron emitted will be (b) 2.48 eV Flight radiated by 100 W lamp (b) 2.5×10^{22} clied in the place vacuum in a plant is decreased ent is decreased	= mass of electron and $c = s$ (c) $\left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2}$ the with photoelectric work (c) 1.24 eV to is 5000 Å, then number of (c) 2.5 × 10 ²⁰ photocell, then	speed of light [MP PET/PMT 1998 (d) $\left[\frac{2(h\lambda - \phi)}{m}\right]^{1/2}$ k function of 1.9 <i>eV</i> . The kineti [CBSE 1998 (d) 1.16 <i>eV</i> F photons radiated per second ar [RPET 1997 (d) 5×10^{17} [MP PMT 1997

Get More Learning Materials Here : 📕

R www.studentbro.in

(a) Chemical to electrical (b) Magnetic to electrical (c) Optical to electrical (d) Mechanical to electrical

118. When light of wavelength is 2537Å made incident on the copper surface, then the stopping potential is 0.24 volt. The threshold frequency of copper [RPET 1996]

(a) $1.124 \times 10^{15} Hz$ (b) $1.414 \times 10^{14} Hz$ (c) $2.248 \times 10^{15} Hz$ (d) None of the above

119. An image of the sun is formed by a lens of focal length of 30 *cm* on the metal surface of a photoelectric cell and a photoelectric current *i* is produced. The lens forming the image is then replaced by another of the same diameter but of focal length 15 *cm*. The photoelectric current in this case is [Manipal MEE 1995]

(a)
$$\frac{i}{2}$$
 (b) *i* (c) 2*i* (d) 4*i*

- 120. Work function of a metal is 2.1 eV. Which of the waves of the following wavelengths will be able to emit photoelectrons from its surface [Bihar MEE 1995]
 - (a) 4000 Å, 7500 Å (b) 5500 Å, 6000 Å (c) 4000 Å, 6000 Å (d) None of these
- **121.** Stopping potential for photoelectrons
 - (a) Does not depend on the frequency of the incident light
 - (b) Does not depend upon the nature of the cathode material

(b) 2 : 1

- (c) Depends on both the frequency of the incident light and nature of the cathode material
- (d) Depends upon the intensity of the incident light
- **122.** If the frequency of light in a photoelectric experiment is doubled the stopping potential will **[CPMT 1994]**
 - (a) Be doubled (b) Be halved (c) Become more than double (d) Become less then double

123. Two identical metal plates show photoelectric effect. Light of wavelength λ_A falls on plate A and λ_B falls on plate B. $\lambda_A = 2\lambda_B$. The maximum *K.E.* of the photoelectron is K_A and K_B respectively. Which one of the following statements is true [CBSE 1993]

- (a) $2K_A = K_B$ (b) $K_A = 2K_B$ (c) $K_A < K_B / 2$ (d) $K_A > 2K_B$
- **124.** When light of wavelength 300 *nm* (nanometer) falls on a photoelectric emitter, photoelctrons are liberated. For another emitter, however light of 600 *nm* wavelength is sufficient for creating photoemission. What is the ratio of the work functions of the two emitters

[CBSE 1993]

[MP PET 1993]

🕀 www.studentbro.in

[MP PET 1994]

125. The kinetic energy of most energetic electrons emitted from a metallic surface is doubled when the wavelength λ of the incident radiation is changed from 400 nm to 310 nm. The work function of the metal is **[CBSE 1993]**

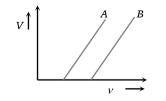
(c) 4:1

(c) 2.2 *eV*

(b) Measure light intensity

(a) 0.9 *eV* (b) 1.7 *eV*

126. Photo cell is a device to


(a) Store photons

(c) Convert photon energy into mechanical energy (d) Store electrical energy for replacing storage batteries

127. The stopping potential as a function of the frequency of the incident radiation is plotted for two different photoelectric surfaces *A* and *B*. The graphs show that work function of *A* is **[DPMT 1992]**

(a) Greater than that of B

(b) Smaller than that of *B*

(d) 1:4

(d) 3.1 eV

128. The UV photon is incident on a metal of photoelectric work function 2 eV and produces a photoelectron of energy 2 eV. The wavelength associated with the photon is [CBSE 1991] (d) 4900 Å (a) 3100 Å (b) 6200 Å (c) 9300 Å 129. Photoelectric work function of a metal is 1 eV. Light of wavelength 3000 Å falls on it. The photoelectrons come out with velocity [CBSE 1990] (b) $10^3 ms^{-1}$ (c) $10^4 ms^{-1}$ (d) $10^6 ms^{-1}$ (a) 10 ms^{-1} **130.** Threshold frequency for a metal is 10^{15} Hz, when the light of 4000 Å wavelength incident on it, then choose the correct statement [MP PMT 1990] (a) Photoelectric effect will not happen (b) Photoelectrons will be emitted with zero velocity (c) Photoelectrons will be emitted with the velocity of 10^{3} m/sec. (d) Photoelectrons will be emitted with the velocity of 10^{5} m/sec. 131. The work function for tungsten and sodium are 4.5 eV and 2.3 eV respectively. If the threshold wavelength λ for sodium is 5460 Å, the value of λ for tungsten is [MP PET 1990] (b) 10683 Å (c) 2791 Å (d) 528 Å (a) 5893 Å **132.** A radio transmitter operates at a frequency of 880 *kHz* and a power of 10 *kW*. The number of photons emitted per second are [CBSE 1990; MP PET 1990] (a) 1.72×10^{31} (b) 1327×10^{34} (c) 13.27×10^{34} (d) 0.075×10^{-34} 133. A and B are two light sources. Intensity of source A is more than that of B and frequency of source B is more than that of A. The current obtained for the photocell is [MP PET 1988] (a) More for source A (b) More for source B (c) Same for both the sources (d) Nothing can be said 134. Which of the following statement is not related to photon [MP PET 1988] (a) Its energy does not depends on frequency (b) Its energy depends on frequency (c) It moves always with the velocity of light (d) Its wave is electromagnetic **135.** In an experiment on photoelectric effect the frequency f of the incident light is plotted against the stopping potential V_0 . The work function of the photoelectric surface is g [CPMT 1987] $\uparrow Y$ $V_{\rm o}$ (a) $OB \times e$ in eV0 v_0 (b) OB in volt

(d) No inference can be drawn about their work functions from the given graphs

(c) *OA* in *eV*

(c) Equal to that of B

- (d) The slope of the line AB
- **136.** When the photons of energy hv fall on a photo-sensitive surface (work function hv_0) electrons are emitted from the metallic surface. This is known as photoelectric effect. The electron coming out of the surface have a kinetic energy. Then it is possible to state that

[NCERT 1983]

(a) All ejected electrons have the same *K.E.* equal to $hv - hv_0$

Get More Learning Materials Here :

В

	(b) The ejected electron equal to $hv - hv_0$	ons have a distribution of kin	netic energy, the most ene	ergetic one have kinetic energ
	(c) The most energetic	ejected electrons have kinetic	c energy equal to hv	
	(d) The kinetic energy of	of the most energetic ejected of	electrons is hv_0	
37.			-	energies range from zero to 2. ed to release the tightly boun
	(a) 1.6 <i>eV</i>	(b) 1.6 eV to 6.8 <i>eV</i>	(c) 6.8 <i>eV</i>	(d) > $6.8 \ eV$
38.	-	10^4 Photons/ m^2 – sec of green is more sensitive and by what		c can detect 10^{-13} watt/ m^2 . As
	-	ve and by a factor of 5.00	(b) Ear is more sensitiv	ve by a factor of 5.00
	(c) Both are equally set factor of 10^{-1}	nsitive	(d)	Eye is more sensitive by
39.		•		rface, it is completely absorbe , then the photoelectric currer
	(a) 2 <i>mA</i>	(b) 0.4 <i>µ</i> A	(c) 4.0 <i>mA</i>	(d) 4 µA
				X-rays
40.	The X-ray can not be dir (a) Large wavelength	ffracted by means of an ordin (b) High speed	ary grating due to (c) Short wavelength	X-rays
	-	(b) High speed		(d) All of these
41.	(a) Large wavelengthX-ray will travel minim(a) Air	(b) High speednum distance in(b) Iron	(c) Short wavelength(c) Wood	(d) All of these [MP PET 2003 (d) Water
41.	(a) Large wavelengthX-ray will travel minim(a) AirThe minimum wavelength	 (b) High speed num distance in (b) Iron gth of X-ray emitted by X-rays 	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The acceleration 	(d) All of these [MP PET 2003 (d) Water erating voltage is
41. 42.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelenge (a) 30 kV 	 (b) High speed uum distance in (b) Iron gth of X-ray emitted by X-rays (b) 50 kV 	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The acceleration 	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 <i>kV</i>
41. 42.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelengting (a) 30 kV Characteristic X-rays and 	 (b) High speed (b) High speed (b) Iron (c) Iron (c) John W (c) John W (c) So kV (c) The produced due to 	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The accelence (c) 80 kV 	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 <i>kV</i>
41. 42.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelengting (a) 30 kV Characteristic X-rays and (a) Transfer of momental 	 (b) High speed (b) High speed (b) Iron (c) Iron (c) Jron (c) Jron<	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The accelence (c) 80 kV with target atoms 	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 <i>kV</i>
41. 42.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelenge (a) 30 kV Characteristic X-rays and (a) Transfer of moment (b) Transition of electron 	 (b) High speed (b) High speed (b) Iron (c) Jron (c) Jron<	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The accelence (c) 80 kV with target atoms 	(d) All of these [MP PET 2003 (d) Water erating voltage is
41. 42.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelenge (a) 30 kV Characteristic X-rays and (a) Transfer of moment (b) Transition of electron (c) Heating of the target 	 (b) High speed (b) High speed (b) Iron (c) Iron (c) 50 kV (c) 50 kV (c) 50 kV (c) 100 constraints (c) 100 con	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The accelence (c) 80 kV with target atoms tronic orbits in an atom 	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 <i>kV</i>
41. 42. 43.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelenge (a) 30 kV Characteristic X-rays and (a) Transfer of moment (b) Transition of electron (c) Heating of the target (d) Transfer of energy in 	 (b) High speed (b) Iron (b) Iron gth of X-ray emitted by X-rays (b) 50 kV re produced due to tum in collision of electrons we cons from higher to lower elected et in collision of electrons with a 	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The accelence (c) 80 kV with target atoms tronic orbits in an atom 	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 <i>kV</i>
41. 42. 43.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelenge (a) 30 kV Characteristic X-rays and (a) Transfer of moment (b) Transition of electron (c) Heating of the target 	 (b) High speed (b) Iron (b) Iron gth of X-ray emitted by X-rays (b) 50 kV re produced due to tum in collision of electrons we cons from higher to lower elected et in collision of electrons with a 	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The accelence (c) 80 kV with target atoms tronic orbits in an atom atoms in the target 	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 <i>kV</i>
41. 42. 43. 44.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelenge (a) 30 kV Characteristic X-rays and (a) Transfer of moment (b) Transition of electron (c) Heating of the target (d) Transfer of energy for X-rays when incident of the target (a) Exert a force on it 	 (b) High speed (b) Iron (b) Iron (c) Jron (c) 50 kV (c) 50 kV (c) 50 kV (c) 100 construction of electrons we cons from higher to lower elected (c) 100 construction of electrons with a metal (c) Transfer energy to it 	 (c) Short wavelength (c) Wood tube is 0.4125 Å. The accelence (c) 80 kV with target atoms tronic orbits in an atom atoms in the target (c) Transfer pressure t 	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 <i>kV</i> [AIIMS 2003
41. 42. 43. 44.	 (a) Large wavelength X-ray will travel minim (a) Air The minimum wavelenge (a) 30 kV Characteristic X-rays and (a) Transfer of moment (b) Transition of electronic (c) Heating of the target (d) Transfer of energy if X-rays when incident on (a) Exert a force on it The minimum wavelenge equal to 	 (b) High speed (b) Iron (b) Iron (c) Iron (b) 50 kV (c) 50 kV (c	 (c) Short wavelength (c) Wood (c) Wood (c) 80 kV (c) 80 kV with target atoms tronic orbits in an atom atoms in the target (c) Transfer pressure t ectrons accelerated by a point MT 1997; MP PET 1997; MP PM 	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 <i>kV</i> [AIIMS 2003 to it (d) All of the above otential difference of <i>V volts</i> is [MT/PET 1998; MP PMT 1996, 2003
41. 42. 43. 44. 45.	(a) Large wavelength X-ray will travel minim (a) Air The minimum waveleng (a) $30 kV$ Characteristic X-rays an (a) Transfer of moment (b) Transition of electron (c) Heating of the target (d) Transfer of energy in X-rays when incident of (a) Exert a force on it The minimum waveleng equal to (a) $\frac{eV}{hc}$	(b) High speed for distance in (b) Iron gth of X-ray emitted by X-rays (b) 50 kV re produced due to tum in collision of electrons we cons from higher to lower elected in collision of electrons with a n a metal (b) Transfer energy to it gth of X-rays produced by elected [CPMT 1986; 88, 91; RPM (b) $\frac{eh}{cV}$	(c) Short wavelength (c) Wood tube is 0.4125 Å. The accele (c) 80 kV with target atoms tronic orbits in an atom atoms in the target (c) Transfer pressure t ectrons accelerated by a po MT 1997; MP PET 1997; MP PM (c) $\frac{hc}{eV}$	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 kV [AIIMS 2003 to it (d) All of the above otential difference of V volts is MT/PET 1998; MP PMT 1996, 2003 (d) $\frac{cV}{eh}$
41. 42. 43. 44. 45.	(a) Large wavelength X-ray will travel minim (a) Air The minimum waveleng (a) $30 kV$ Characteristic X-rays an (a) Transfer of moment (b) Transition of electron (c) Heating of the target (d) Transfer of energy if X-rays when incident on (a) Exert a force on it The minimum waveleng equal to (a) $\frac{eV}{hc}$ An X-ray machine is wo	(b) High speed tum distance in (b) Iron gth of X-ray emitted by X-rays (b) 50 kV re produced due to tum in collision of electrons we tons from higher to lower elected in collision of electrons with a n a metal (b) Transfer energy to it gth of X-rays produced by elected [CPMT 1986; 88, 91; RPM (b) $\frac{eh}{cV}$ prking at a high voltage. The spectrum	(c) Short wavelength (c) Wood tube is 0.4125 Å. The accele (c) 80 kV with target atoms tronic orbits in an atom atoms in the target (c) Transfer pressure t ectrons accelerated by a po WT 1997; MP PET 1997; MP PM (c) $\frac{hc}{eV}$ pectrum of the X-rays emitt	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 kV [AIIMS 2003 (d) All of the above otential difference of V volts is (T/PET 1998; MP PMT 1996, 2003 (d) $\frac{cV}{eh}$ red will
41. 42. 43. 44. 45.	(a) Large wavelength X-ray will travel minim (a) Air The minimum waveleng (a) $30 kV$ Characteristic X-rays an (a) Transfer of moment (b) Transition of electron (c) Heating of the target (d) Transfer of energy in X-rays when incident of (a) Exert a force on it The minimum waveleng equal to (a) $\frac{eV}{hc}$	(b) High speed tum distance in (b) Iron gth of X-ray emitted by X-rays (b) 50 kV re produced due to tum in collision of electrons we ons from higher to lower elected in collision of electrons with a n a metal (b) Transfer energy to it gth of X-rays produced by elected [CPMT 1986; 88, 91; RPM (b) $\frac{eh}{cV}$ orking at a high voltage. The spectrum	(c) Short wavelength (c) Wood tube is 0.4125 Å. The accele (c) 80 kV with target atoms tronic orbits in an atom atoms in the target (c) Transfer pressure t ectrons accelerated by a po MT 1997; MP PET 1997; MP PM (c) $\frac{hc}{eV}$	(d) All of these [MP PET 2003 (d) Water erating voltage is (d) 60 kV [AIIMS 2003 (d) All of the above otential difference of V volts is MT/PET 1998; MP PMT 1996, 2003 (d) $\frac{cV}{eh}$ red will wavelength

Get More Learning Materials Here : 📕

	(a) Velocity	(b) Intensity	(c) Frequency	(d) Polarization
8.	X-rays are produced due	to		
	(a) Break up of molecule	S	(b) Change in atomic ene	ergy level
	(c) Change in nuclear en	ergy level	(d)	Radioactive disintegration
9.	The essential distinction	on between X-rays and γ -ray	ys is that	
	(a) γ -rays have smalle	r wavelength than X-rays		
	(b) γ -rays emanate from	om nucleus while X-rays em	anate from outer part of	the atom
	(c) γ -rays have grater	ionizing power than X-rays	3	
	(d) γ -rays are more pe	enetrating than X-rays		
0.	X-ray beam can be deflect	ted by		
	(a) Magnetic field	(b) Electric field	(c) Both (a) and (b)	(d) None of these
51.	For the production of ch	haracteristic K_{γ}, X -ray, the elec	ctron transition is	
	(a) $n = 2$ to $n = 1$	(b) $n = 3$ to $n = 2$	(c) $n = 3$ to $n = 1$	(d) $n = 4$ to $n = 1$
2.	When X rays pass throug	gh a strong uniform magnetic f	field, then they	
	(a) Do not get deflected direction of the field	at all	(b)	Get deflected in th
	(c) Get deflected in the c field	lirection opposite to the field	(d) Get deflected in the	direction perpendicular to th
3.	If the potential difference emitted <i>X</i> -rays will be	e applied across <i>X</i> -ray tube is	V volts, then approximatel	
				[CBSE 1996; MP PET 2002
	(a) $\frac{1227}{\sqrt{V}} Å$	(b) $\frac{1240}{V}$ Å	(c) $\frac{2400}{V}$ Å	(d) $\frac{12400}{V}$ Å
4.	If <i>V</i> be the accelerating v	oltage, then the maximum free		s is given by 91; MP PET 2000; MP PMT 2002
;4.		-	[NCERT 1971; CPMT 199	91; MP PET 2000; MP PMT 2002
4.	If <i>V</i> be the accelerating v (a) $\frac{eh}{V}$	Foltage, then the maximum free (b) $\frac{hV}{e}$		
	(a) $\frac{eh}{V}$	-	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$	(d) $\frac{h}{eV}$ h wavelength penetrate most
5.	 (a) eh/V A metal block is exposed (a) 2Å 	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å	(d) $\frac{h}{eV}$ (d) $\frac{V}{eV}$ (e) wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å
5.	 (a) eh/V A metal block is exposed (a) 2Å 	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 <i>kV</i> . What is the minim	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å	(d) $\frac{h}{eV}$ (d) $\frac{V}{eV}$ (e) wavelength penetrate most (ncert 1980; JIPMER 2002) (d) 8Å
5.	 (a) eh/V A metal block is exposed (a) 2Å An X-ray tube operates 	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 <i>kV</i> . What is the minim	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å	(d) $\frac{h}{eV}$ (d) $\frac{V}{eV}$ (e) wavelength penetrate most (ncert 1980; JIPMER 2002) (d) 8Å
5.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10^{-19}$ (a) 0.133 Å Bragg's law for X-rays is	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 kV. What is the minim 0 ⁸ ms ⁻¹) (b) 0.4 Å	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å num wavelength emitted ? (c) 1.2 Å	p1; MP PET 2000; MP PMT 2002 (d) $\frac{h}{eV}$ th wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å P (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 (d) 6.6 Å
55. 56.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10$ (a) 0.133 Å	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 kV. What is the minim $0^8 ms^{-1}$)	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å num wavelength emitted ?	p1; MP PET 2000; MP PMT 2002 (d) $\frac{h}{eV}$ th wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å P (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 (d) 6.6 Å
5. 56.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10^{-19}$ (a) 0.133 Å Bragg's law for X-rays is	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 <i>kV</i> . What is the minim $0^8 m s^{-1}$) (b) 0.4 Å (b) $2d \sin \theta = n\lambda$	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å num wavelength emitted ? (c) 1.2 Å (c) $n\sin\theta = 2\lambda d$	p1; MP PET 2000; MP PMT 2002 (d) $\frac{h}{eV}$ (d) wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 (d) 6.6 Å [UPSEAT 2001 (d) None of these
5. 6.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10^{-19}$ (a) 0.133 Å Bragg's law for X-rays is (a) $d \sin \theta = 2n\lambda$ Intensity of X-rays dependent	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 <i>kV</i> . What is the minim $0^8 m s^{-1}$) (b) 0.4 Å (b) $2d \sin \theta = n\lambda$ ds upon the number of (b) Protons	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å num wavelength emitted ? (c) 1.2 Å (c) $n \sin \theta = 2\lambda d$ [SCR4 (c) Neutrons	p1; MP PET 2000; MP PMT 2002 (d) $\frac{h}{eV}$ (d) wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 (d) 6.6 Å [UPSEAT 2001 (d) None of these A 1998; DPMT 2000; AFMC 2001 (d) Positrons
5. 56. 57.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10^{-19}$ (a) 0.133 Å Bragg's law for X-rays is (a) $d \sin \theta = 2n\lambda$ Intensity of X-rays dependent	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 <i>kV</i> . What is the minim $0^8 m s^{-1}$) (b) 0.4 Å (b) $2d \sin \theta = n\lambda$ ds upon the number of (b) Protons as bombarding the target product	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å num wavelength emitted ? (c) 1.2 Å (c) $n \sin \theta = 2\lambda d$ [SCR4 (c) Neutrons	p1; MP PET 2000; MP PMT 2002 (d) $\frac{h}{eV}$ (d) wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 (d) 6.6 Å [UPSEAT 2001 (d) None of these A 1998; DPMT 2000; AFMC 2001 (d) Positrons
5. 6. 7. 8.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10^{-19}$ (a) 0.133 Å Bragg's law for X-rays is (a) $d \sin \theta = 2n\lambda$ Intensity of X-rays dependent (a) Electrons In an X-ray tube electron energy of bombarding electron	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 <i>kV</i> . What is the minim $0^8 m s^{-1}$) (b) 0.4 Å (b) $2d \sin \theta = n\lambda$ ds upon the number of (b) Protons as bombarding the target produce ctrons (b) 12375 <i>eV</i>	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å num wavelength emitted ? (c) 1.2 Å (c) $n \sin \theta = 2\lambda d$ [SCR4 (c) Neutrons nce X-rays of minimum wav (c) 14375 eV	p1; MP PET 2000; MP PMT 2002 (d) $\frac{h}{eV}$ (d) wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 (d) 6.6 Å [UPSEAT 2001 (d) None of these A 1998; DPMT 2000; AFMC 2001 (d) Positrons
5. 6. 7. 8.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10^{-19}$ (a) 0.133 Å Bragg's law for X-rays is (a) $d \sin \theta = 2n\lambda$ Intensity of X-rays dependent (a) Electrons In an X-ray tube electron energy of bombarding electron	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 kV. What is the minim $0^8 ms^{-1}$) (b) 0.4 Å (b) $2d\sin\theta = n\lambda$ and supon the number of (b) Protons as bombarding the target produce	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å num wavelength emitted ? (c) 1.2 Å (c) $n \sin \theta = 2\lambda d$ [SCR4 (c) Neutrons nce X-rays of minimum wav (c) 14375 eV	p1; MP PET 2000; MP PMT 2002 (d) $\frac{h}{eV}$ (d) wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 (d) 6.6 Å [UPSEAT 2001 (d) None of these A 1998; DPMT 2000; AFMC 2001 (d) Positrons velength 1 Å. What must be th
5. 6. 7. 8.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10^{-19}$ (a) 0.133 Å Bragg's law for X-rays is (a) $d \sin \theta = 2n\lambda$ Intensity of X-rays dependent (a) Electrons In an X-ray tube electron energy of bombarding electron	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 <i>kV</i> . What is the minim $0^8 m s^{-1}$) (b) 0.4 Å (b) $2d \sin \theta = n\lambda$ ds upon the number of (b) Protons as bombarding the target produce ctrons (b) 12375 <i>eV</i>	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å num wavelength emitted ? (c) 1.2 Å (c) $n \sin \theta = 2\lambda d$ [SCR4 (c) Neutrons nce X-rays of minimum wav (c) 14375 eV	p1; MP PET 2000; MP PMT 2002 (d) $\frac{h}{eV}$ (d) wavelength penetrate most [NCERT 1980; JIPMER 2002 (d) 8Å (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 (d) 6.6 Å [UPSEAT 2001 (d) None of these A 1998; DPMT 2000; AFMC 2001 (d) Positrons velength 1 Å. What must be th
55. 56. 57. 58. 59.	(a) $\frac{eh}{V}$ A metal block is exposed (a) 2Å An X-ray tube operates 10^{-19} coulomb, $c = 3 \times 10^{-19}$ (a) 0.133 Å Bragg's law for X-rays is (a) $d \sin \theta = 2n\lambda$ Intensity of X-rays dependent (a) Electrons In an X-ray tube electron energy of bombarding electron energy of bombarding electron	(b) $\frac{hV}{e}$ to beams of X-ray of different (b) 4Å on 30 kV. What is the minim $0^8 ms^{-1}$) (b) 0.4 Å (b) $2d\sin\theta = n\lambda$ ds upon the number of (b) Protons as bombarding the target produce teristic K_{β} X-rays, the electro (b) $n=3$ to $n=2$	[NCERT 1971; CPMT 199 (c) $\frac{eV}{h}$ wavelength X-rays of whic (c) 6Å um wavelength emitted ? (c) 1.2 Å (c) $n \sin \theta = 2\lambda d$ [SCR4 (c) Neutrons ice X-rays of minimum wav (c) 14375 eV n transition is	(d) $\frac{h}{eV}$ (d) $\frac{h}{eV}$ (e) wavelength penetrate most [NCERT 1980; JIPMER 2002 (f) 8Å (h = 6.6 × 10 ⁻³⁴ Js, e = 1.6 × (f) 6.6 Å [UPSEAT 2001 (f) None of these (h) Positrons (h) Positrons (h) 15375 eV

CLICK HERE

(»

r www.studentbro.in

162. The intensity of X-rays from a coolidge tube is plotted against wavelength as shown in the figure. The minimum wavelength found is λ_c and the wavelength of the K_{α} line is λ_k . As the accelerating voltage is increased

163.	 (a) (λ_K - λ_C) increases (b) (λ_K - λ_C) decreases (c) λ_K increases (d) λ_K decreases Penetrating power of X-rays can be increased by (a) Increasing the potential difference between anode a (b) Decreasing the potential difference between anode a (c) Increasing the cathode filament current (d) Decreasing the cathode filament current 		→ λ → [MP PMT 1997, 2000]
164		is increased by	
104.	In an X-ray tube the intensity of the emitted X-ray beam (a) Increasing the filament current current	(b)	Decreasing the filament
	(c) Increasing the target potential potential	(d)	Decreasing the target
165.	X-rays are	[CPMT 1	975; EAMCET 1995; RPET 2000]
	(a) Stream of electrons	(b) Stream of positively c	harged particles
	(c) Electromagnetic radiations particles	(d)	Stream of uncharged
166.	For the structural analysis of crystals, X-rays are used	because	
	(a) X-rays have wavelength of the order of interatomic penetrating radiations	spacing	(b) X-rays are highly
	(c) Wavelength of X-rays is of the order of nuclear size	(d) X-rays are coherent ra	adiations
167.	Electrons with energy 80 <i>keV</i> are incident on the tungst have – 72.5 <i>keV</i> energy. <i>X</i> -rays emitted by the tube contained by tube c		K shell electrons of tungsten
	(a) A continuous X-ray spectrum (Bremsstrahlung) with	a minimum wavelength of	~ 0.155Å
	(b) A continuous X-ray spectrum (Bremsstrahlung] with	all wavelengths	
	(c) The characteristic X-rays spectrum of tungsten		°
	(d) A continuous X-ray spectrum (Bremsstrahlung) with a ray spectrum of tungsten	-	
168.	The wavelength of most energetic X-rays emitted whe approximately	n a metal target is bomba	rded by 40 <i>keV</i> electrons, is
	$(h = 6.62 \times 10^{-34} J\text{-sec}; 1eV = 1.6 \times 10^{-19} J; c = 3 \times 10^8 m/s$	-	
	(a) 300 Å (b) 10 Å	(c) 4 Å	(d) 0.31 Å
169.	Consider the following two statements <i>A</i> and <i>B</i> and iden	-	-
	A : The characteristic <i>X</i> -ray spectrum depends on the na		-
	B : The short wavelength limit of continuous X-ray s applied to the X-rays tube	pectrum varies mversely	ITAMORT (Med.) accel

[EAMCET (Med.) 2000]

energy of an X ray pl 3.5 <i>keV</i> X-ray beam coming fr Monochromatic Having all wavelengtl Having all wavelengtl Having all wavelengtl ybdenum is used as a A heavy element and melting point	e (b) <i>A</i> is false and <i>B</i> is true noton of wavelength 1.65 Å i (b) 5.5 <i>keV</i> from an X-ray tube will be as smaller than a certain ma as larger than a certain min as lying between a minimun target element for production can easily absorb high veloc gh thermal conductivity fers to the transition	is $(h = 6.6 \times 10^{-34} J\text{-sec}, c = 3 \times$ (c) 7.5 keV [IIT-JE aximum wavelength imum wavelength in and a maximum waveleng on of X-rays because it is tity electrons	[EAMCET (Engg.) 2000 (d) 9.5 <i>keV</i> EE 1985; SCRA 1996; MP PET 1999	
3.5 <i>keV</i> X-ray beam coming fr Monochromatic Having all wavelength Having all wavelength ybdenum is used as a A heavy element and melting point An element having hig haracteristic X-ray re	(b) 5.5 <i>keV</i> from an X-ray tube will be as smaller than a certain mains larger than a certain min as lying between a minimum target element for production can easily absorb high veloc gh thermal conductivity	(c) 7.5 keV [IIT-JE aximum wavelength imum wavelength n and a maximum waveleng on of X-rays because it is tity electrons	[EAMCET (Engg.) 2000 (d) 9.5 <i>keV</i> EE 1985; SCRA 1996; MP PET 1999 gth [CPMT 1980; RPET 199	
X-ray beam coming fr Monochromatic Having all wavelengtl Having all wavelengtl Having all wavelengtl ybdenum is used as a A heavy element and melting point An element having hig haracteristic X-ray re	com an X-ray tube will be ns smaller than a certain ma ns larger than a certain min ns lying between a minimun target element for productio can easily absorb high veloc gh thermal conductivity	[IIT-JE aximum wavelength imum wavelength n and a maximum waveleng on of X-rays because it is tity electrons	(d) 9.5 <i>keV</i> EE 1985; SCRA 1996; MP PET 1999 gth [CPMT 1980; RPET 1999	
X-ray beam coming fr Monochromatic Having all wavelengtl Having all wavelengtl Having all wavelengtl ybdenum is used as a A heavy element and melting point An element having hig haracteristic X-ray re	com an X-ray tube will be ns smaller than a certain ma ns larger than a certain min ns lying between a minimun target element for productio can easily absorb high veloc gh thermal conductivity	[IIT-JE aximum wavelength imum wavelength n and a maximum waveleng on of X-rays because it is tity electrons	EE 1985; SCRA 1996; MP PET 1999 gth [CPMT 1980; RPET 1999	
Monochromatic Having all wavelength Having all wavelength Having all wavelength ybdenum is used as a A heavy element and melting point An element having his haracteristic X-ray re	ns smaller than a certain mans larger than a certain minns lying between a minimum target element for production easily absorb high veloc	aximum wavelength imum wavelength n and a maximum waveleng on of X-rays because it is ity electrons	th [CPMT 1980; RPET 199	
Having all wavelengtl Having all wavelengtl Having all wavelengtl ybdenum is used as a A heavy element and melting point An element having hig haracteristic X-ray re	ns larger than a certain min ns lying between a minimun target element for productio can easily absorb high veloc gh thermal conductivity	imum wavelength n and a maximum waveleng on of X-rays because it is ity electrons	[CPMT 1980; RPET 199	
Having all wavelength Having all wavelength ybdenum is used as a A heavy element and melting point An element having hig haracteristic X-ray re	ns larger than a certain min ns lying between a minimun target element for productio can easily absorb high veloc gh thermal conductivity	imum wavelength n and a maximum waveleng on of X-rays because it is ity electrons	[CPMT 1980; RPET 199	
Having all wavelength ybdenum is used as a A heavy element and melting point An element having hig haracteristic X-ray re	ns lying between a minimun target element for productio can easily absorb high veloc gh thermal conductivity	n and a maximum waveleng on of X-rays because it is ity electrons	[CPMT 1980; RPET 199	
ybdenum is used as a A heavy element and n melting point An element having hig haracteristic X-ray re	target element for production can easily absorb high veloc gh thermal conductivity	on of X-rays because it is ity electrons	[CPMT 1980; RPET 199	
A heavy element and n melting point An element having hig haracteristic X-ray re	can easily absorb high veloc gh thermal conductivity	ity electrons		
n melting point An element having hi _l haracteristic X-ray re	gh thermal conductivity		(b) A heavy element with	
haracteristic X-ray re	•	(d) Heavy and can easi		
-	fers to the transition	(a) meany and can cash	ly deflect electrons	
n = 2 to $n = 1$			[MP PMT 1999	
	(b) $n = 3$ to $n = 2$	(c) $n = 3$ to $n = 1$	(d) $n = 4$ to $n = 2$	
at kV potential is to be 25 × 10 ⁻³⁴ <i>J</i> -sec)	e applied on X-ray tube so th	hat minimum wavelength o	f emitted X-rays may be 1Å (<i>h</i>	
			[UPSEAT 199	
12.42 <i>kV</i>	(b) 12.84 <i>kV</i>	(c) 11.98 <i>kV</i>	(d) 10.78 <i>kV</i>	
-	from <i>H</i> -atom because		[RPET 199	
It is a gas		(b) It is very light		
The difference in energy els of <i>H</i> -atoms is very	rgy levels of <i>H</i> -atom is very large	small (d)	The difference in energ	
rgy of X-rays is about			[MP PMT 199	
8 eV	(b) 80 <i>eV</i>	(c) 800 <i>eV</i>	(d) 8000 <i>eV</i>	
		-	-	
-		e e		
X-ray beam of intensity I_0 passes through an absorption plate of thickness d . If absorption coefficient of material of plate is μ , the correct statement regarding the transmitted intensity I of X-ray is				
$I = I_0(1 - e^{-\mu d})$	$(b) I = I_0 e^{-\mu d}$	(c) $I = I_0(1 - e^{-\mu/d})$	(d) $I = I_0 e^{-\mu/d}$	
ays are produced in X ays has values from	-ray tube operating at a giv	en accelerating voltage. Th	e wavelength of the continuou	
			[IIT-JEE 199	
o to ∞		(b) λ_{\min} to ∞ , where λ_{\max}	hin > 0	
o to λ_{\max} , where λ_{\max} $\lambda_{\min} < \lambda_{\max} < \infty$	< ∞	(d)	$\lambda_{ m min}$ to $\lambda_{ m max}$, whe	
		velength of 0.021 <i>nm</i> . The e	nergy difference between the	
0.51 <i>MeV</i>	(b) 1.2 <i>MeV</i>	(c) 59 <i>KeV</i>	(d) 13.6 <i>eV</i>	
			[DPMT 199	
		gy (c) X-rays can penetrat		
- X-rays are waves				
	a maximum wavelenge γ beam of intensity rial of plate is μ , the $I = I_0(1 - e^{-\mu d})$ γ s are produced in X γ s has values from 0 to ∞ 0 to λ_{max} , where λ_{max} 0 to $\lambda_{max} < \infty$ emission of K_a X-ray L energy levels will b $0.51 \ MeV$ pton effect shows that K_a rays are waves	A maximum wavelength (b) f beam of intensity I_0 passes through an absorber and the plate is μ , the correct statement regarding $f = I_0(1 - e^{-\mu d})$ (b) $I = I_0 e^{-\mu d}$ f are produced in X-ray tube operating at a given f as values from f to ∞ f to λ_{max} , where $\lambda_{max} < \infty$ f min $< \lambda_{max} < \infty$ emission of K_a X-rays from tungsten is at a wavelength of K_a X-rays from tungsten is at a	y beam of intensity I_0 passes through an absorption plate of thickness rial of plate is μ , the correct statement regarding the transmitted intensity $I = I_0(1 - e^{-\mu d})$ (b) $I = I_0 e^{-\mu d}$ (c) $I = I_0(1 - e^{-\mu/d})$ ys are produced in X-ray tube operating at a given accelerating voltage. The ys has values from (b) λ_{\min} to ∞ , where λ_{\max} to ∞ (b) λ_{\min} to ∞ , where λ_{\max} to λ_{\max} , where $\lambda_{\max} < \infty$ (d) min $< \lambda_{\max} < \infty$ emission of K_a X-rays from tungsten is at a wavelength of 0.021 <i>nm</i> . The effect shows that	

	(a) 20	(b) 60	(c) 40	(d) 80
83.	X-ray astronomy			[Haryana CEE 1996]
	(a) Orbiting the ear	th because X-rays are almo	ost completely absorbed by the a	atmosphere
		ossible through the use of etely transparant to X-rays		the earth because the atmosphere
	(c) Is possible both	with satellites and on the	earth because the atmosphere d	oes not affect X-rays at all
	(d) Is not possible a	at all because X-rays have a	a very short wavelength	
84.				at should be the minimum voltage Trays ($h = 6.63 \times 10^{-34}$ J-sec, $c = 3 \times$
	(a) 8280 V	(b) 828 V	(c) 82800 V	(d) 8.28 V
85.	heat 495 <i>Jkg</i> ⁻¹ °C. C			e has a mass of 1.0 <i>kg</i> and specific to X-rays and the entire remaining
				[IIT-JEE 1995]
	e e	t material must have a hig	0 I	
	•	t material must have low t	-	
	•	e of rise of temperature of	•	
		с ,	nitted is about $0.25 \times 10^{10} m$	(d) None of these
6	(a) 1, 3, 4 In X -ray spectrum y	(b) 1, 2, 3 wavelength λ of line K, den	(c) 2, 3, 4 ends on atomic number <i>Z</i> as	(d) None of these [RPMT 1995]
· U .				
	(a) $\lambda \propto Z^2$	(b) $\lambda \propto (Z-1)^2$	(c) $\lambda \propto \frac{1}{(Z-1)}$	(d) $\lambda \propto \frac{1}{(Z-1)^2}$
7.	The energy of a pho	ton of characteristic X-ray	from a Coolidge tube comes fro	m [MP PET 1995]
	(a) The kinetic ener target	rgy of the striking electron	(b) The kinetic ener	rgy of the free electrons of the
		rgy of the ions of the target		nsition of the target atom
8.	The figure represen The sharp peaks <i>A</i> a			tube as a function of wavelength.
	(a) Band spectrum		A Intensit	B
	(b) Continuous spec	ctrum	Inte	
	(c) Characteristic r	adiations	/	
	(d) White radiation	S	O Wave let	ngth
9.	When a beam of a	ccelerated electron hits a	• • •	ctrum is emitted from the target. Ay in operating at 40,000 volts [NCER
	(a) 0.25 Å	(b) 0.5 Å	(c) 1.5 Å	(d) 1.0 Å
90.			the following different sheets	[RPMT 1995]
	(a) Copper	(b) Gold	(c) Beryllium	(d) Lead
1.		ing is accompanied by the	characteristic X-ray emission	[MP PET 1993]
	(a) α -particle emiss		-	n (d) K-electron capture
)2.			in an X-ray tube to accelerate e D^{-19} J and $h = 6.63 \times 10^{-34}$ J-sec)	lectrons. The maximum frequency
	(a) 10 ¹⁹ <i>Hz</i>	(b) 10 ¹⁸ Hz	(c) 10 ¹⁶ Hz	(d) 10^{20} Hz
		、 / · ····	··/ ··	• •

- (a) Intestines would burst on exposure to X-rays
- (b) The X-rays would not pass through the intestines
- (c) The X-rays will pass through the intestines without causing a good shadow for any useful diagnosis
- (d) A very small exposure of X-rays causes cancer in the intestines
- **194.** If λ_1 and λ_2 are the wavelengths of characteristic X-rays and gamma rays respectively, then the relation between them is
 - [MP PMT 1987]

[CPMT 1972]

[CPMT 1972]

🕀 www.studentbro.in

[CPMT 1975, 80, 90; RPET 1999]

(a) $\lambda_1 = \frac{1}{\lambda_2}$ (b) $\lambda_1 = \lambda_2$ (c) $\lambda_1 > \lambda_2$ (d) $\lambda_1 < \lambda_2$

195. The binding energy of the innermost electron in tungsten is 40 keV. To produce characteristic X-rays using a tungsten target in an X-ray tube the potential difference V between the cathode and the anticathode should be [IIT-JEE 1985]

(a)
$$V < 40 \ kV$$
 (b) $V \le 40 \ kV$ (c) $V > 40 \ kV$ (d) $V > / < 40 \ kV$

196. The wavelength of K_{α} -line in copper is 1.54 Å. The ionisatin energy of K electron in copper in Joule is [EAMCET 198]

(a) 11.2×10^{-27} (b) 12.9×10^{-16} (c) 1.7×10^{-15} (d) 10×10^{-16}

197. The characteristic X-ray radiation is emitted when

- (a) The electrons are accelerated to a fixed energy
- (b) The source of electrons emits a monenergetic beam
- (c) The bombarding electrons knock out electrons from the inner shell of the target atoms and one of the outer electrons falls into this vacancy

(d) The valence electrons in the target atom are removed as a result of the collision

198. In radio-theraphy, X-rays are used to

- (a) Detect bone fractures (b) Treat cancer by controlled exposure (c) Detect heart diseases
 - (d) Detect fault in radio receiving circuits

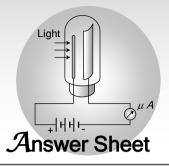
(d) Positive rays

(b) Image formation by an optical system

199. In obtaining an X-ray photograph of our hand, we use the principle of

- (a) Shadow photography
- (c) Photoelectric effect
- **200.** X-rays are not used for radar purpose because
 - (a) They are not reflected by the target (b) They are not electromagnetic waves
 - (c) They are completely absorbed by the air (d) They sometimes damage the target
- **201.** The wavelength of K_{α} line for an element of atomic number 43 is λ . Then the wavelength of K_{α} line for an element of atomic number 29 is

(a)
$$\frac{43}{29}\lambda$$
 (b) $\frac{42}{28}\lambda$ (c) $\frac{9}{4}\lambda$ (d) $\frac{4}{9}\lambda$


202. Let λ_{α} , λ_{β} and λ'_{α} denote the wavelengths of the X-rays of the K_{α} , K_{β} and L_{α} lines in the characteristic X-rays for a metal

(a)
$$\lambda'_{\alpha} > \lambda'_{\alpha} > \lambda_{\beta}$$
 (b) $\lambda'_{\alpha} > \lambda_{\beta} > \lambda_{\alpha}$ (c) $\frac{1}{\lambda_{\beta}} = \frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda'_{\alpha}}$ (d) $\frac{1}{\lambda_{\alpha}} + \frac{1}{\lambda_{\beta}} = \frac{1}{\lambda'_{\alpha}}$

203. In a Coolidge tube, the potential difference across the tube is 20 kV, and 10 mA current flows through the voltage supply. Only 0.5% of the energy carried by the electrons striking the target is converted into X-rays. The X-ray beam carries a power of

CLICK HERE

```
(a) 0.1 W
                                                      (c) 2 W
                                                                                (d) 10 W
                          (b) 1 W
```


Assignments																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	b	а	С	b	С	d	d	а	С	а	b	а	С	d	а	b	d	b	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	а	С	b	С	d	b	b	С	d	b	b	b	d	С	С	b	а	d	а
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
d	b	а	а	а	а	С	а	С	b	а	а	а	d	а	d	d	С	d	С
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
С	С	С	b	С	а	С	С	b	d	С	b	С	а	а	а	d	d	С	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
С	а	С	b	а	а	а	b	а	С	b	d	а	а	С	b	а	b	а	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	b	d	а	b	а	а	d	а	b	b	с	а	с	b	С	а	b	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	с	С	b	С	b	b	а	d	а	С	а	а	а	а	b	с	а	b	С
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	а	а	d	С	С	С	b	b	d	d	а	d	С	а	b	b	а	b	С
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	а	а	а	С	а	d	d	С	С	С	b	а	а	с	d	b	b	b	С
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
d	с	а	а	а	d	d	С	а	d	d	а	с	С	с	С	с	b	а	а
201	202	203																	
С	с	b																	

